复现PointNet++(语义分割网络):Windows + PyTorch + S3DIS语义分割 + 代码

news/2024/5/20 9:33:14 标签: pytorch, 人工智能, python, 点云, 语义分割, PointNet

一、平台

Windows 10

GPU RTX 3090 + CUDA 11.1 + cudnn 8.9.6

Python 3.9

Torch 1.9.1 + cu111

所用的原始代码:https://github.com/yanx27/Pointnet_Pointnet2_pytorch

二、数据

Stanford3dDataset_v1.2_Aligned_Version

三、代码

分享给有需要的人,代码质量勿喷。

对源代码进行了简化和注释。

分割结果保存成txt,或者利用 laspy 生成点云

别问为啥在C盘,问就是2T的三星980Pro

3.1 文件组织结构

3.2 数据预处理

3.2.1 run_collect_indoor3d_data.py 生成*.npy文件

改了路径

3.2.2 indoor3d_util.py

改了路径

3.2.3 S3DISDataLoader.py

改了路径

3.3 训练 train_SematicSegmentation.py

python"># 参考
# https://github.com/yanx27/Pointnet_Pointnet2_pytorch
# 先在Terminal运行:python -m visdom.server
# 再运行本文件

import argparse
import os
# import datetime
import logging
import importlib
import shutil
from tqdm import tqdm
import numpy as np
import time
import visdom
import torch
import warnings
warnings.filterwarnings('ignore')

from dataset.S3DISDataLoader import S3DISDataset
from PointNet2 import dataProcess


# PointNet
from PointNet2.pointnet_sem_seg import get_model as PNss
from PointNet2.pointnet_sem_seg import get_loss as PNloss

# PointNet++
from PointNet2.pointnet2_sem_seg import get_model as PN2SS
from PointNet2.pointnet2_sem_seg import get_loss as PN2loss


# True为PointNet++
PN2bool = True
# PN2bool = False


# 当前文件的路径
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))

# 训练输出模型的路径: PointNet
dirModel1 = ROOT_DIR + '/trainModel/pointnet_model'
if not os.path.exists(dirModel1):
        os.makedirs(dirModel1)
# 训练输出模型的路径
dirModel2 = ROOT_DIR + '/trainModel/PointNet2_model'
if not os.path.exists(dirModel2):
        os.makedirs(dirModel2)

# 日志的路径
pathLog = os.path.join(ROOT_DIR, 'LOG_train.txt')

# 数据集的路径
pathDataset = os.path.join(ROOT_DIR, 'dataset/stanford_indoor3d/')

# 分类的类别
classNumber = 13
classes = ['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase',
           'board', 'clutter']
class2label = {cls: i for i, cls in enumerate(classes)}
seg_classes = class2label
seg_label_to_cat = {}
for i, cat in enumerate(seg_classes.keys()):
    seg_label_to_cat[i] = cat

# 日志和输出
def log_string(str):
    logger.info(str)
    print(str)

def inplace_relu(m):
    classname = m.__class__.__name__
    if classname.find('ReLU') != -1:
        m.inplace=True

def parse_args():
    parser = argparse.ArgumentParser('Model')
    parser.add_argument('--pnModel', type=bool, default=True, help='True = PointNet++;False = PointNet')
    parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]')
    parser.add_argument('--epoch', default=320, type=int, help='Epoch to run [default: 32]')
    parser.add_argument('--learning_rate', default=0.001, type=float, help='Initial learning rate [default: 0.001]')
    parser.add_argument('--GPU', type=str, default='0', help='GPU to use [default: GPU 0]')
    parser.add_argument('--optimizer', type=str, default='Adam', help='Adam or SGD [default: Adam]')
    parser.add_argument('--decay_rate', type=float, default=1e-4, help='weight decay [default: 1e-4]')
    parser.add_argument('--npoint', type=int, default=4096, help='Point Number [default: 4096]')
    parser.add_argument('--step_size', type=int, default=10, help='Decay step for lr decay [default: every 10 epochs]')
    parser.add_argument('--lr_decay', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
    parser.add_argument('--test_area', type=int, default=5, help='Which area to use for test, option: 1-6 [default: 5]')
    return parser.parse_args()


if __name__ == '__main__':
    # python -m visdom.server
    visdomTL = visdom.Visdom()
    visdomTLwindow = visdomTL.line([0], [0], opts=dict(title='train_loss'))
    visdomVL = visdom.Visdom()
    visdomVLwindow = visdomVL.line([0], [0], opts=dict(title='validate_loss'))
    visdomTVL = visdom.Visdom(env='PointNet++')

    # region 创建日志文件
    logger = logging.getLogger("train")
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    file_handler = logging.FileHandler(pathLog)
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(formatter)
    logger.addHandler(file_handler)
    #endregion

    #region 超参数
    args = parse_args()
    args.pnModel = PN2bool
    log_string('------------ hyper-parameter ------------')
    log_string(args)
    # 指定GPU
    os.environ["CUDA_VISIBLE_DEVICES"] = args.GPU
    pointNumber = args.npoint
    batchSize = args.batch_size
    #endregion

    # region dataset
    # train data
    trainData = S3DISDataset(split='train',
                             data_root=pathDataset, num_point=pointNumber,
                             test_area=args.test_area, block_size=1.0, sample_rate=1.0, transform=None)
    trainDataLoader = torch.utils.data.DataLoader(trainData, batch_size=batchSize, shuffle=True, num_workers=0,
                                                  pin_memory=True, drop_last=True,
                                                  worker_init_fn=lambda x: np.random.seed(x + int(time.time())))
    # Validation data
    testData = S3DISDataset(split='test',
                            data_root=pathDataset, num_point=pointNumber,
                            test_area=args.test_area, block_size=1.0, sample_rate=1.0, transform=None)
    testDataLoader = torch.utils.data.DataLoader(testData, batch_size=batchSize, shuffle=False, num_workers=0,
                                                 pin_memory=True, drop_last=True)
    log_string("The number of training data is: %d" % len(trainData))
    log_string("The number of validation data is: %d" % len(testData))

    weights = torch.Tensor(trainData.labelweights).cuda()
    #endregion


    # region loading model:使用预训练模型或新训练
    modelSS = ''
    criterion = ''
    if PN2bool:
        modelSS = PN2SS(classNumber).cuda()
        criterion = PN2loss().cuda()
        modelSS.apply(inplace_relu)
    else:
        modelSS = PNss(classNumber).cuda()
        criterion = PNloss().cuda()
        modelSS.apply(inplace_relu)



    # 权重初始化
    def weights_init(m):
        classname = m.__class__.__name__
        if classname.find('Conv2d') != -1:
            torch.nn.init.xavier_normal_(m.weight.data)
            torch.nn.init.constant_(m.bias.data, 0.0)
        elif classname.find('Linear') != -1:
            torch.nn.init.xavier_normal_(m.weight.data)
            torch.nn.init.constant_(m.bias.data, 0.0)

    try:
        path_premodel = ''
        if PN2bool:
            path_premodel = os.path.join(dirModel2, 'best_model_S3DIS.pth')
        else:
            path_premodel = os.path.join(dirModel1, 'best_model_S3DIS.pth')
        checkpoint = torch.load(path_premodel)
        start_epoch = checkpoint['epoch']
        # print('pretrain epoch = '+str(start_epoch))
        modelSS.load_state_dict(checkpoint['model_state_dict'])
        log_string('!!!!!!!!!! Use pretrain model')
    except:
        log_string('...... starting new training ......')
        start_epoch = 0
        modelSS = modelSS.apply(weights_init)
    #endregion
    
    # start_epoch = 0
    # modelSS = modelSS.apply(weights_init)


    #region 训练的参数和选项
    if args.optimizer == 'Adam':
        optimizer = torch.optim.Adam(
            modelSS.parameters(),
            lr=args.learning_rate,
            betas=(0.9, 0.999),
            eps=1e-08,
            weight_decay=args.decay_rate
        )
    else:
        optimizer = torch.optim.SGD(modelSS.parameters(), lr=args.learning_rate, momentum=0.9)

    def bn_momentum_adjust(m, momentum):
        if isinstance(m, torch.nn.BatchNorm2d) or isinstance(m, torch.nn.BatchNorm1d):
            m.momentum = momentum

    LEARNING_RATE_CLIP = 1e-5
    MOMENTUM_ORIGINAL = 0.1
    MOMENTUM_DECCAY = 0.5
    MOMENTUM_DECCAY_STEP = args.step_size

    global_epoch = 0
    best_iou = 0
    #endregion


    for epoch in range(start_epoch, args.epoch):
        # region Train on chopped scenes
        log_string('****** Epoch %d (%d/%s) ******' % (global_epoch + 1, epoch + 1, args.epoch))

        lr = max(args.learning_rate * (args.lr_decay ** (epoch // args.step_size)), LEARNING_RATE_CLIP)
        log_string('Learning rate:%f' % lr)
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr

        momentum = MOMENTUM_ORIGINAL * (MOMENTUM_DECCAY ** (epoch // MOMENTUM_DECCAY_STEP))
        if momentum < 0.01:
            momentum = 0.01
        log_string('BN momentum updated to: %f' % momentum)

        modelSS = modelSS.apply(lambda x: bn_momentum_adjust(x, momentum))
        modelSS = modelSS.train()
        #endregion

        # region 训练
        num_batches = len(trainDataLoader)
        total_correct = 0
        total_seen = 0
        loss_sum = 0
        for i, (points, target) in tqdm(enumerate(trainDataLoader), total=len(trainDataLoader), smoothing=0.9):
            # 梯度归零
            optimizer.zero_grad()

            # xyzL
            points = points.data.numpy() # ndarray = bs,4096,9(xyz rgb nxnynz)
            points[:, :, :3] = dataProcess.rotate_point_cloud_z(points[:, :, :3]) ## 数据处理的操作
            points = torch.Tensor(points) # tensor = bs,4096,9
            points, target = points.float().cuda(), target.long().cuda()
            points = points.transpose(2, 1) # tensor = bs,9,4096

            # 预测结果
            seg_pred, trans_feat = modelSS(points) # tensor = bs,4096,13  # tensor = bs,512,16
            seg_pred = seg_pred.contiguous().view(-1, classNumber) # tensor = (bs*4096=)点数量,13

            # 真实标签
            batch_label = target.view(-1, 1)[:, 0].cpu().data.numpy() # ndarray = (bs*4096=)点数量
            target = target.view(-1, 1)[:, 0] # tensor = (bs*4096=)点数量

            # loss
            loss = criterion(seg_pred, target, trans_feat, weights)
            loss.backward()

            # 优化器来更新模型的参数
            optimizer.step()

            pred_choice = seg_pred.cpu().data.max(1)[1].numpy() # ndarray = (bs*4096=)点数量
            correct = np.sum(pred_choice == batch_label) # 预测正确的点数量

            total_correct += correct
            total_seen += (batchSize * pointNumber)
            loss_sum += loss
        log_string('Training mean loss: %f' % (loss_sum / num_batches))
        log_string('Training accuracy: %f' % (total_correct / float(total_seen)))

        # draw
        trainLoss = (loss_sum.item()) / num_batches
        visdomTL.line([trainLoss], [epoch+1], win=visdomTLwindow, update='append')
        #endregion

        # region 保存模型
        if epoch % 1 == 0:
            modelpath=''
            if PN2bool:
                modelpath = os.path.join(dirModel2, 'model' + str(epoch + 1) + '_S3DIS.pth')
            else:
                modelpath = os.path.join(dirModel1, 'model' + str(epoch + 1) + '_S3DIS.pth')


            state = {
                'epoch': epoch,
                'model_state_dict': modelSS.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
            }
            torch.save(state, modelpath)
            logger.info('Save model...'+modelpath)
        #endregion

        # region Evaluate on chopped scenes
        with torch.no_grad():
            num_batches = len(testDataLoader)
            total_correct = 0
            total_seen = 0
            loss_sum = 0
            labelweights = np.zeros(classNumber)
            total_seen_class = [0 for _ in range(classNumber)]
            total_correct_class = [0 for _ in range(classNumber)]
            total_iou_deno_class = [0 for _ in range(classNumber)]
            modelSS = modelSS.eval()

            log_string('****** Epoch Evaluation %d (%d/%s) ******' % (global_epoch + 1, epoch + 1, args.epoch))
            for i, (points, target) in tqdm(enumerate(testDataLoader), total=len(testDataLoader), smoothing=0.9):
                points = points.data.numpy() # ndarray = bs,4096,9
                points = torch.Tensor(points) # tensor = bs,4096,9
                points, target = points.float().cuda(), target.long().cuda() # tensor = bs,4096,9 # tensor = bs,4096
                points = points.transpose(2, 1) # tensor = bs,9,4096

                seg_pred, trans_feat = modelSS(points) # tensor = bs,4096,13 # tensor = bs,512,16
                pred_val = seg_pred.contiguous().cpu().data.numpy() # ndarray = bs,4096,13
                seg_pred = seg_pred.contiguous().view(-1, classNumber) # tensor = bs*4096,13

                batch_label = target.cpu().data.numpy() # ndarray = bs,4096
                target = target.view(-1, 1)[:, 0] # tensor = bs*4096
                loss = criterion(seg_pred, target, trans_feat, weights)
                loss_sum += loss
                pred_val = np.argmax(pred_val, 2) # ndarray = bs,4096
                correct = np.sum((pred_val == batch_label))
                total_correct += correct
                total_seen += (batchSize * pointNumber)
                tmp, _ = np.histogram(batch_label, range(classNumber + 1))
                labelweights += tmp

                for l in range(classNumber):
                    total_seen_class[l] += np.sum((batch_label == l))
                    total_correct_class[l] += np.sum((pred_val == l) & (batch_label == l))
                    total_iou_deno_class[l] += np.sum(((pred_val == l) | (batch_label == l)))

            labelweights = labelweights.astype(np.float32) / np.sum(labelweights.astype(np.float32))
            mIoU = np.mean(np.array(total_correct_class) / (np.array(total_iou_deno_class, dtype=np.float64) + 1e-6))
            log_string('eval mean loss: %f' % (loss_sum / float(num_batches)))
            log_string('eval point avg class IoU: %f' % (mIoU))
            log_string('eval point accuracy: %f' % (total_correct / float(total_seen)))
            log_string('eval point avg class acc: %f' % (
                np.mean(np.array(total_correct_class) / (np.array(total_seen_class, dtype=np.float64) + 1e-6))))

            iou_per_class_str = '------- IoU --------\n'
            for l in range(classNumber):
                iou_per_class_str += 'class %s weight: %.3f, IoU: %.3f \n' % (
                    seg_label_to_cat[l] + ' ' * (14 - len(seg_label_to_cat[l])), labelweights[l - 1],
                    total_correct_class[l] / float(total_iou_deno_class[l]))

            log_string(iou_per_class_str)
            log_string('Eval mean loss: %f' % (loss_sum / num_batches))
            log_string('Eval accuracy: %f' % (total_correct / float(total_seen)))

            # draw
            valLoss = (loss_sum.item()) / num_batches
            visdomVL.line([valLoss], [epoch+1], win=visdomVLwindow, update='append')

            # region 根据 mIoU确定最佳模型
            if mIoU >= best_iou:
                best_iou = mIoU
                bestmodelpath = ''
                if PN2bool:
                    bestmodelpath = os.path.join(dirModel2, 'best_model_S3DIS.pth')
                else:
                    bestmodelpath = os.path.join(dirModel1, 'best_model_S3DIS.pth')
                state = {
                    'epoch': epoch,
                    'class_avg_iou': mIoU,
                    'model_state_dict': modelSS.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                }
                torch.save(state, bestmodelpath)
                logger.info('Save best model......'+bestmodelpath)
            log_string('Best mIoU: %f' % best_iou)
            #endregion

        #endregion

        global_epoch += 1

        # draw
        visdomTVL.line(X=[epoch+1], Y=[trainLoss],name="train loss", win='line', update='append',
                       opts=dict(showlegend=True, markers=False,
                                 title='PointNet++ train validate loss',
                                 xlabel='epoch', ylabel='loss'))
        visdomTVL.line(X=[epoch+1], Y=[valLoss], name="train loss", win='line', update='append')

    log_string('-------------------------------------------------\n\n')

3.4 预测测试 test_SematicSegmentation.py

python"># 参考
# https://github.com/yanx27/Pointnet_Pointnet2_pytorch

import argparse
import sys
import os
import numpy as np
import logging
from pathlib import Path
import importlib
from tqdm import tqdm
import torch
import warnings
warnings.filterwarnings('ignore')

from dataset.S3DISDataLoader import ScannetDatasetWholeScene
from dataset.indoor3d_util import g_label2color

# PointNet
from PointNet2.pointnet_sem_seg import get_model as PNss
# PointNet++
from PointNet2.pointnet2_sem_seg import get_model as PN2SS



PN2bool = True
# PN2bool = False


# region 函数:投票;日志输出;保存结果为las。
# 投票决定结果
def add_vote(vote_label_pool, point_idx, pred_label, weight):
    B = pred_label.shape[0]
    N = pred_label.shape[1]
    for b in range(B):
        for n in range(N):
            if weight[b, n] != 0 and not np.isinf(weight[b, n]):
                vote_label_pool[int(point_idx[b, n]), int(pred_label[b, n])] += 1
    return vote_label_pool


# 日志
def log_string(str):
    logger.info(str)
    print(str)


# save to LAS
import laspy
def SaveResultLAS(newLasPath, point_np, rgb_np, label1, label2):
    # data
    newx = point_np[:, 0]
    newy = point_np[:, 1]
    newz = point_np[:, 2]
    newred = rgb_np[:, 0]
    newgreen = rgb_np[:, 1]
    newblue = rgb_np[:, 2]
    newclassification = label1
    newuserdata = label2
    minx = min(newx)
    miny = min(newy)
    minz = min(newz)

    # create a new header
    newheader = laspy.LasHeader(point_format=3, version="1.2")
    newheader.scales = np.array([0.0001, 0.0001, 0.0001])
    newheader.offsets = np.array([minx, miny, minz])
    newheader.add_extra_dim(laspy.ExtraBytesParams(name="Classification", type=np.uint8))
    newheader.add_extra_dim(laspy.ExtraBytesParams(name="UserData", type=np.uint8))
    # create a Las
    newlas = laspy.LasData(newheader)
    newlas.x = newx
    newlas.y = newy
    newlas.z = newz
    newlas.red = newred
    newlas.green = newgreen
    newlas.blue = newblue
    newlas.Classification = newclassification
    newlas.UserData = newuserdata
    # write
    newlas.write(newLasPath)

# 超参数
def parse_args():
    parser = argparse.ArgumentParser('Model')
    parser.add_argument('--pnModel', type=bool, default=True, help='True = PointNet++;False = PointNet')
    parser.add_argument('--batch_size', type=int, default=32, help='batch size in testing [default: 32]')
    parser.add_argument('--GPU', type=str, default='0', help='specify GPU device')
    parser.add_argument('--num_point', type=int, default=4096, help='point number [default: 4096]')
    parser.add_argument('--test_area', type=int, default=5, help='area for testing, option: 1-6 [default: 5]')
    parser.add_argument('--num_votes', type=int, default=1,
                        help='aggregate segmentation scores with voting [default: 1]')
    return parser.parse_args()

#endregion


# 当前文件的路径
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))

# 模型的路径
pathTrainModel = os.path.join(ROOT_DIR, 'trainModel/pointnet_model')
if PN2bool:
    pathTrainModel = os.path.join(ROOT_DIR, 'trainModel/PointNet2_model')

# 结果路径
visual_dir = ROOT_DIR + '/testResultPN/'
if PN2bool:
    visual_dir = ROOT_DIR + '/testResultPN2/'
visual_dir = Path(visual_dir)
visual_dir.mkdir(exist_ok=True)

# 日志的路径
pathLog = os.path.join(ROOT_DIR, 'LOG_test_eval.txt')

# 数据集的路径
pathDataset = os.path.join(ROOT_DIR, 'dataset/stanford_indoor3d/')

# 分割类别排序
classNumber = 13
classes = ['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase',
           'board', 'clutter']
class2label = {cls: i for i, cls in enumerate(classes)}
seg_classes = class2label
seg_label_to_cat = {}
for i, cat in enumerate(seg_classes.keys()):
    seg_label_to_cat[i] = cat


if __name__ == '__main__':
    #region LOG info
    logger = logging.getLogger("test_eval")
    logger.setLevel(logging.INFO) #日志级别:DEBUG, INFO, WARNING, ERROR, 和 CRITICAL
    file_handler = logging.FileHandler(pathLog)
    file_handler.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    file_handler.setFormatter(formatter)
    logger.addHandler(file_handler)
    #endregion

    #region 超参数
    args = parse_args()
    args.pnModel = PN2bool
    log_string('--- hyper-parameter ---')
    log_string(args)
    os.environ["CUDA_VISIBLE_DEVICES"] = args.GPU
    batchSize = args.batch_size
    pointNumber = args.num_point
    testArea = args.test_area
    voteNumber = args.num_votes
    #endregion


    #region ---------- 加载语义分割的模型 ----------
    log_string("---------- Loading sematic segmentation model ----------")
    ssModel = ''
    if PN2bool:
        ssModel = PN2SS(classNumber).cuda()
    else:
        ssModel = PNss(classNumber).cuda()
    path_model = os.path.join(pathTrainModel, 'best_model_S3DIS.pth')
    checkpoint = torch.load(path_model)
    ssModel.load_state_dict(checkpoint['model_state_dict'])
    ssModel = ssModel.eval()
    #endregion


    # 模型推断(inference)或评估(evaluation)阶段,不需要计算梯度,而且关闭梯度计算可以显著减少内存占用,加速计算。
    log_string('--- Evaluation whole scene')
    with torch.no_grad():
        # IOU 结果
        total_seen_class = [0 for _ in range(classNumber)]
        total_correct_class = [0 for _ in range(classNumber)]
        total_iou_deno_class = [0 for _ in range(classNumber)]

        # 测试区域的所有文件
        testDataset = ScannetDatasetWholeScene(pathDataset, split='test', test_area=testArea, block_points=pointNumber)
        scene_id_name = testDataset.file_list
        scene_id_name = [x[:-4] for x in scene_id_name] # 名称(无扩展名)
        testCount = len(scene_id_name)
        testCount = 1
        # 遍历需要预测的物体
        for batch_idx in range(testCount):
            log_string("Inference [%d/%d] %s ..." % (batch_idx + 1, testCount, scene_id_name[batch_idx]))
            # 数据
            whole_scene_data = testDataset.scene_points_list[batch_idx]
            # 真值
            whole_scene_label = testDataset.semantic_labels_list[batch_idx]
            whole_scene_labelR = np.reshape(whole_scene_label, (whole_scene_label.size, 1))
            # 预测标签
            vote_label_pool = np.zeros((whole_scene_label.shape[0], classNumber))

            # 同一物体多次预测
            for _ in tqdm(range(voteNumber), total=voteNumber):
                scene_data, scene_label, scene_smpw, scene_point_index = testDataset[batch_idx]
                num_blocks = scene_data.shape[0]
                s_batch_num = (num_blocks + batchSize - 1) // batchSize
                batch_data = np.zeros((batchSize, pointNumber, 9))

                batch_label = np.zeros((batchSize, pointNumber))
                batch_point_index = np.zeros((batchSize, pointNumber))
                batch_smpw = np.zeros((batchSize, pointNumber))

                for sbatch in range(s_batch_num):
                    start_idx = sbatch * batchSize
                    end_idx = min((sbatch + 1) * batchSize, num_blocks)
                    real_batch_size = end_idx - start_idx
                    batch_data[0:real_batch_size, ...] = scene_data[start_idx:end_idx, ...]
                    batch_label[0:real_batch_size, ...] = scene_label[start_idx:end_idx, ...]
                    batch_point_index[0:real_batch_size, ...] = scene_point_index[start_idx:end_idx, ...]
                    batch_smpw[0:real_batch_size, ...] = scene_smpw[start_idx:end_idx, ...]
                    batch_data[:, :, 3:6] /= 1.0

                    torch_data = torch.Tensor(batch_data)
                    torch_data = torch_data.float().cuda()
                    torch_data = torch_data.transpose(2, 1)
                    seg_pred, _ = ssModel(torch_data)
                    batch_pred_label = seg_pred.contiguous().cpu().data.max(2)[1].numpy()

                    # 投票产生预测标签
                    vote_label_pool = add_vote(vote_label_pool, batch_point_index[0:real_batch_size, ...],
                                               batch_pred_label[0:real_batch_size, ...],
                                               batch_smpw[0:real_batch_size, ...])

            # region  保存预测的结果
            # 预测标签
            pred_label = np.argmax(vote_label_pool, 1)
            pred_labelR = np.reshape(pred_label, (pred_label.size, 1))

            # 点云-真值-预测标签
            pcrgb_ll = np.hstack((whole_scene_data, whole_scene_labelR, pred_labelR))

            # ---------- 保存成 txt ----------
            pathTXT = os.path.join(visual_dir, scene_id_name[batch_idx] + '.txt')
            np.savetxt(pathTXT, pcrgb_ll, fmt='%f', delimiter='\t')
            log_string('save:' + pathTXT)
            # ---------- 保存成 las ----------
            pathLAS = os.path.join(visual_dir, scene_id_name[batch_idx] + '.las')
            SaveResultLAS(pathLAS, pcrgb_ll[:,0:3], pcrgb_ll[:,3:6], pcrgb_ll[:,6], pcrgb_ll[:,7])
            log_string('save:' + pathLAS)
            # endregion


            # IOU 临时结果
            total_seen_class_tmp = [0 for _ in range(classNumber)]
            total_correct_class_tmp = [0 for _ in range(classNumber)]
            total_iou_deno_class_tmp = [0 for _ in range(classNumber)]
            
            for l in range(classNumber):
                total_seen_class_tmp[l] += np.sum((whole_scene_label == l))
                total_correct_class_tmp[l] += np.sum((pred_label == l) & (whole_scene_label == l))
                total_iou_deno_class_tmp[l] += np.sum(((pred_label == l) | (whole_scene_label == l)))
                total_seen_class[l] += total_seen_class_tmp[l]
                total_correct_class[l] += total_correct_class_tmp[l]
                total_iou_deno_class[l] += total_iou_deno_class_tmp[l]

            iou_map = np.array(total_correct_class_tmp) / (np.array(total_iou_deno_class_tmp, dtype=np.float64) + 1e-6)
            print(iou_map)
            arr = np.array(total_seen_class_tmp)
            tmp_iou = np.mean(iou_map[arr != 0])
            log_string('Mean IoU of %s: %.4f' % (scene_id_name[batch_idx], tmp_iou))


        IoU = np.array(total_correct_class) / (np.array(total_iou_deno_class, dtype=np.float64) + 1e-6)
        iou_per_class_str = '----- IoU -----\n'
        for l in range(classNumber):
            iou_per_class_str += 'class %s, IoU: %.3f \n' % (
                seg_label_to_cat[l] + ' ' * (14 - len(seg_label_to_cat[l])),
                total_correct_class[l] / float(total_iou_deno_class[l]))
        log_string(iou_per_class_str)
        log_string('eval point avg class IoU: %f' % np.mean(IoU))
        log_string('eval whole scene point avg class acc: %f' % (
            np.mean(np.array(total_correct_class) / (np.array(total_seen_class, dtype=np.float64) + 1e-6))))
        log_string('eval whole scene point accuracy: %f' % (
                np.sum(total_correct_class) / float(np.sum(total_seen_class) + 1e-6)))

    log_string('--------------------------------------\n\n')


http://www.niftyadmin.cn/n/5338270.html

相关文章

ELK之使用Grafana读取ES集群的Nginx日志进行分析展示

一、前提&#xff1a; 直通车 ------------>↓↓↓↓↓↓ 需要ES集群 https://blog.csdn.net/wdy_2099/article/details/125441436需要filebeat https://blog.csdn.net/wdy_2099/article/details/125445893需要logstash https://blog.csdn.net/wdy_2099/article/details/1…

8.2 Window安装部署Redis

文章目录 前言一、下载Redis二、启动server三、启动Redis客户端测试前言 Redis官方并不支持Window版本,但在Github上有第三方的实现,本文基于Window-Redis-x64-5.0.14.1 版本,主要用于本地测试,请勿用于生产环境。 一、下载Redis Github下载地址:https://github.com/tpo…

【Docker】未来已来 | Docker技术在云计算、边缘计算领域的应用前景

欢迎来到英杰社区&#xff1a; https://bbs.csdn.net/topics/617804998 欢迎来到阿Q社区&#xff1a; https://bbs.csdn.net/topics/617897397 &#x1f4d5;作者简介&#xff1a;热爱跑步的恒川&#xff0c;致力于C/C、Java、Python等多编程语言&#xff0c;热爱跑步&#xff…

Java根据模板文件生成excel文件,同时将excel文件转换成图片

需求 需要将指定数据导出成表格样式的图片&#xff0c;如图 业务拆解 定义一个导出模板将得到的数据填入模板中&#xff0c;生成excel文件将ecxel文件转换成png格式的图片 代码实现 需要引入的依赖 <dependency><groupId>cn.hutool</groupId><artif…

mybatisPlus注解将List集合插入到数据库

1.maven引入依赖&#xff08;特别注意版本&#xff0c;3.1以下不支持&#xff09; <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.4.3.1</version></dependency&g…

MySQL索引优化:深入理解索引下推原理与实践

随着MySQL的不断发展和升级&#xff0c;每个版本都为数据库性能和查询优化带来了新的特性。在MySQL 5.6中&#xff0c;引入了一个重要的优化特性——索引下推&#xff08;Index Condition Pushdown&#xff0c;简称ICP&#xff09;。ICP能够在某些查询场景下显著提高查询性能&a…

js 小数精确计算 (mathjs / decimal.js)

mathjs import { all, create } from "mathjs";let mathjs create(all, {precision: 14,number: "BigNumber", });/**加法 */ export function jia(left: any, right: any) {return mathjs.floor(Number(mathjs.add(mathjs.bignumber(left), mathjs.bign…

OpenCV-Python(51):基于Haar特征分类器的面部检测

目标 学习了解Haar 特征分类器为基础的面部检测技术将面部检测扩展到眼部检测等。 基础 以Haar 特征分类器为基础的对象检测技术是一种非常有效的对象检测技术(2001 年Paul_Viola 和Michael_Jones 提出)。它是基于机器学习的,通过使用大量的正负样本图像训练得到一个cascade_…